COSMOGENIC ³⁶Ar FROM NEUTRON CAPTURE BY ³⁵Cl IN THE CHICO L6 CHONDRITE: ADDITIONAL EVIDENCE FOR LARGE SHIELDING; D.H. Garrison, D.D. Bogard, (NASA, Johnson Space Center, Houston, TX 77058) & G.F. Herzog (Rutgers Univ., New Brunswick, NJ 08903). The cosmic-ray-produced 36 Ar/ 38 Ar ratio measured in iron meteorites is ${}^{\circ}$ 0.65 but is not well determined for stone meteorites due to the common presence of trapped Ar or adsorbed atmospheric Ar in bulk analyses. Almost all single-extraction measurements of stones give 36 Ar/ 38 Ar ratios intermediate between the trapped and air values of 5.3 and the expected cosmogenic value of ${}^{\circ}$ 0.65 (1). Cosmic ray interactions produce 36 Ar directly and through the 36 Cl precursor (half-life, $3x10^5$ yrs). The high-energy production rate of 36 Cl in chondrites is predicted to be 3-8 atoms/min/kg (2), and virtually all of the limited 36 Cl measurements in chondrites are within this range (3). Theoretically, 36 Cl can also be produced in significant amounts in large meteorites by thermal neutron capture on 35 Cl (2). Except for Allende (4), significant excesses of 36 Cl and/or cosmogenic 36 Ar attributable to neutron capture have not been reported for any chondrite, including samples of variable shielding from large chondrites. The Chico L6 chondrite is a good candidate for observing cosmogenic 36 Ar produced by neutron capture because: 1) it had a long irradiation under very large shielding (5); 2) an impact 7 O.5 Ga ago strongly degassed it of radiogenic 40 Ar and presumably any trapped Ar as well; 3) measurements of 37 Ar and 38 Ar by stepwise temperature degassing of neutron-irradiated Chico samples define the release of cosmogenic Ar produced from Ca in relation to neutron-capture Ar produced from Cl sites; and 4) we determined the [Cl] for the irradiated samples. The isotopic composition of Ar was measured for stepwise temperature release of both chondritic and melt portions of Chico. For the neutron-irradiated samples, most of the ³⁷Ar and ³⁸Ar (produced in the reactor from Ca and ³⁷Cl, respectively), and most of the cosmogenic ³⁶Ar were released at relatively high extraction temperatures of 1100-1600°C, suggesting that CI contamination is not significant. From the reaction ³⁷Cl (n, γ β) 38Ar and a determination of [CI] in our flux monitor, we calculate [CI] for the chondrite and melt samples of Chico as 77ppm and 84ppm, respectively. For the two unirradiated Chico samples, cosmogenic 36Ar and 38Ar were also primarily released at 1100-1500°C. However, the cosmogenic ³⁶Ar/³⁸Ar ratio varied considerably during the releases, reaching high values around 1000°C of 4.4 and 9 for the chondritic and melt samples, respectively, and dropping to low values around 1400°C of 1.2-1.3. The variation in ³⁶Ar/³⁸Ar was essentially that expected from the relative releases of ³⁸Ar (from Cl) and ³⁷Ar (from Ca) in irradiated samples, and indicates the presence of both high-energy and neutron-capture components for ³⁶Ar. Values greater than ^{5.3} can only be produced from Cl. The average cosmogenic ³⁶Ar/³⁸Ar for the chondritic and melt samples (after small corrections for low-temperature air Ar and ³⁸Ar from probable Cl weathering products) were 1.76 and 2.27, respectively. The maxima in ³⁶Ar/³⁸Ar for the unirradiated samples occurred at approximately the same extraction temperature as maxima in ³⁸Ar/³⁷Ar for the irradiated samples. These data demonstrate that the cosmogenic ³⁶Ar/³⁸Ar ratio in Chico is much higher than the typical value accepted for chondrites of ~0.65-0.7. Assuming a high-energy spallation ratio of 36 Ar/ 38 Ar = 0.65, we calculate excesses of 36 Ar produced by neutron capture on 35 Cl for the chondritic and melt samples of 2.6 x10⁻⁸ and 3.4 x10⁻⁸ ccSTP/g, respectively. For a cosmic ray exposure age for Chico of 63 My (5), these 36 Ar excesses correspond to a 36 Ar production rate by thermal neutron capture of "300 atoms/minute/gram-Cl. By way of comparison, (4) observed an average excess of 36 Ar in their Allende samples of "2x10⁻⁸ ccSTP/g and an average [Cl] of 2800ppm, which yields an average 36 Ar production rate (with Allende exposure age = 5.2 My) of "70 atoms/min/g-Cl. For chondrites this calculated production rate (2, 6) rises from essentially the spallation-produced value at no shielding to values of 200-275 atoms/min/g-Cl or more at shielding levels of "300 g/cm² in large meteorites. Because bulk analyses of most chondrites yield measured 36 Ar/ 38 Ar ratios higher than the assumed cosmogenic value of "0.65, the 38 Ar is corrected for trapped (or atmospheric) Ar using assumed end-member components and the lever rule. The Chico data suggest that for large chondrites the cosmogenic 36 Ar/ 38 Ar ratio may well be significantly higher than 0.65 and therefore such a procedure may underestimate the concentration of cosmogenic 38 Ar. In this context we note that in analyses of many Antarctic chondrites (7) observed that determined amounts of cosmogenic 38 Ar averaged "13% too low in comparison to that expected from measurements of other cosmogenic species. Measurement of 36 Cl in Chico is planned. 1) L. Schultz & H. Kruse, Meteoritics 24, 1989; 2) M.Spergel et al, Proc. 16 LPSC, 91, 1986; 3) K. Nishiizumi, Nucl. Tracks Radiat. Meas. 13, 1987; 4) R.Goebel et al, GCA 46, 1982; 5) D.Garrison et al, LPS XXII, 1991; P.Eberhardt et al, Earth Sci. & Meteoritics, 1963; 7) L.Schutz et al, GCA 55, 1991.